MsGarciaMath.edublogs.org

	It is the distance around a figure. Add all sides. Use the chart. Keywords: fencing, framing, edge, border.	$\begin{aligned} & \mathrm{P}=5+4+2+7+1 \\ & \mathrm{P}=19 \end{aligned}$
	It is the distance around a circle. Keywords: fencing, framing, edge, border $\mathrm{C}=\pi \mathrm{d} \quad \mathrm{C}=2 \pi \mathrm{r}$ π Could be 3.1416, or 3.14,	Approximately 3 diameters equal to the circumference of the circle
【	The number of square units needed to cover the surface of a figure. (see the chart). Keywords: Painting, putting grass, putting tiles. It uses a little two as the exponent of the units. Ex: $4 \mathbf{m}^{\mathbf{2}}$	Area 9 square units
	Triangle Area $1 / 2 \mathrm{~b} \mathrm{~h}$ Perimeter $\mathrm{a}+\mathrm{b}+\mathrm{c}$	What is the area of a triangle that has a base of 3 ' and a height of 4 '? Area $=3 \times 4 / 2=6^{\prime}$
¢	Square Area s^{2} Perimeter 4 s	Find the length of the sides of the squares whose perimeters are given: a) Perimeter 48 " b) Perimeter $=16 \mathrm{~m}$ a) length $48 / 4=12$ " b) length $16 / 4=4 \mathrm{~m}$
	Rectangle Area b h Perimeter $2 \mathrm{~b}+2 \mathrm{~h}$	Calculate the area and perimeter of a rectangle with a base of 10 cm and a height of 5 cm $\begin{gathered} \text { Area }=10 \times 5=50 \mathrm{~cm}^{2} \\ \text { Perimeter }=10 \times 2+5 \times 2=30 \mathrm{~cm} \end{gathered}$
		Calculate the area and perimeter of a parallelogram with a base of 2 m and a height of 3 m $\begin{gathered} \text { Area }=2 \times 3=6 \mathrm{~m}^{2} \\ \text { Perimeter }=2 \times 2+3 \times 2=10 \mathrm{~m} \end{gathered}$
	Trapezoid Area $\mathrm{h}\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right) / 2$ Perimeter Add all sides	Find the perimeter and area. Perimeter $=3+8+5+4=20 \mathrm{~m}^{2}$ Area $=3 x(8+4) / 2=3 \times 6 / 2=9 \mathrm{~m}$
-	Circle Area $\pi \mathrm{r}^{2}$ Perimeter $\pi \mathrm{d}$ or $\quad 2 \pi \mathrm{r}$	The radius of a circle is $\mathbf{3}$ inches. What is the area? $\begin{gathered} A=3.14 \cdot(3 \mathrm{in}) \cdot(3 \mathrm{in}) \\ A=3.14 \cdot\left(9 \mathrm{in}^{2}\right) \\ A=28.26 \mathrm{in}^{2} \end{gathered}$

$\begin{aligned} & \text { n } \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & \text { O} \end{aligned}$	Polygons are many-sided figures, with sides that are line segments. Polygons are named according to the number of sides and angles they have.	3	triangle or trigon
		4	quadrilateral or tetragon
		5	pentagon
			hexagon
			heptagon

